Robust Interval Estimation of the Innovation Variance of an Arma Model
Davis, William W.
Ann. Statist., Tome 5 (1977) no. 1, p. 700-708 / Harvested from Project Euclid
For the autoregressive-moving average time series model, the normal theory procedure for setting confidence intervals for the error variance is not robust against nonnormality. This paper proposes three asymptotically robust techniques: they are a "standard-error" procedure, an analog of Box's simple data splitting technique, and the jackknife procedure. The large sample distribution of each of these techniques is derived.
Publié le : 1977-07-14
Classification:  Autoregressive-moving average,  discrete time series,  variance,  data splitting,  jackknife,  robust inference,  62M10,  62G35
@article{1176343893,
     author = {Davis, William W.},
     title = {Robust Interval Estimation of the Innovation Variance of an Arma Model},
     journal = {Ann. Statist.},
     volume = {5},
     number = {1},
     year = {1977},
     pages = { 700-708},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343893}
}
Davis, William W. Robust Interval Estimation of the Innovation Variance of an Arma Model. Ann. Statist., Tome 5 (1977) no. 1, pp.  700-708. http://gdmltest.u-ga.fr/item/1176343893/