Mean Integrated Square Error Properties of Density Estimates
Davis, Kathryn Bullock
Ann. Statist., Tome 5 (1977) no. 1, p. 530-535 / Harvested from Project Euclid
The rate at which the mean integrated square error decreases as sample size increases is evaluated for general $L^1$ kernel estimates and for the Fourier integral estimate for a probability density. The rates are compared to that of the minimum M.I.S.E.; the Fourier integral estimate is found to be asymptotically optimal.
Publié le : 1977-05-14
Classification:  Nonparametric estimation,  density estimation,  kernel estimates,  Fourier integral estimate,  order of consistency,  62G05
@article{1176343850,
     author = {Davis, Kathryn Bullock},
     title = {Mean Integrated Square Error Properties of Density Estimates},
     journal = {Ann. Statist.},
     volume = {5},
     number = {1},
     year = {1977},
     pages = { 530-535},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343850}
}
Davis, Kathryn Bullock. Mean Integrated Square Error Properties of Density Estimates. Ann. Statist., Tome 5 (1977) no. 1, pp.  530-535. http://gdmltest.u-ga.fr/item/1176343850/