Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model
Jureckova, Jana
Ann. Statist., Tome 5 (1977) no. 1, p. 464-472 / Harvested from Project Euclid
Let $\hat{\mathbf{\Delta}}_M$ be an $M$-estimator (maximum-likelihood type estimator) and $\hat{\mathbf{\Delta}}_R$ be an $R$-estimator (rank estimator) of the parameter $\mathbf{\Delta} = (\Delta_1,\cdots, \Delta_p)$ in the linear regression model $X_{Ni} = \sum^p_{j=1} \Delta_jc_{ji} + e_i, i = 1,\cdots, N$. The asymptotic distribution of $\hat\mathbf{\Delta}_M - \hat\mathbf{\Delta}_R$ is derived for $p$ fixed and $N \rightarrow \infty,$ under some assumptions on the design matrix, on the error distribution $F$ and on the functions generating the respective estimators. The result has several consequences which have an interest of their own; among others, it is shown that to any $M$-estimator corresponds an $R$-estimator such that the estimators asymptotically equivalent, and conversely. A special case when $\hat\mathbf{\Delta}_M$ is the maximum likelihood estimator and $\hat\mathbf{\Delta}_R$ the $R$-estimator, both asymptotically efficient for some distribution $G$, is also considered.
Publié le : 1977-05-14
Classification:  $M$-estimate,  $R$-estimate,  asymptotically normal distribution,  62G05,  62G35
@article{1176343843,
     author = {Jureckova, Jana},
     title = {Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model},
     journal = {Ann. Statist.},
     volume = {5},
     number = {1},
     year = {1977},
     pages = { 464-472},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343843}
}
Jureckova, Jana. Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model. Ann. Statist., Tome 5 (1977) no. 1, pp.  464-472. http://gdmltest.u-ga.fr/item/1176343843/