Minimum Hellinger Distance Estimates for Parametric Models
Beran, Rudolf
Ann. Statist., Tome 5 (1977) no. 1, p. 445-463 / Harvested from Project Euclid
This paper defines and studies for independent identically distributed observations a new parametric estimation procedure which is asymptotically efficient under a specified regular parametric family of densities and is minimax robust in a small Hellinger metric neighborhood of the given family. Associated with the estimator is a goodness-of-fit statistic which assesses the adequacy of the chosen parametric model. The fitting of a normal location-scale model by the new procedure is exhibited numerically on clear and on contaminated data.
Publié le : 1977-05-14
Classification:  Robust estimates,  minimum Hellinger distance estimates,  asymptotically efficient estimates,  minimax robust,  62G35,  62F10
@article{1176343842,
     author = {Beran, Rudolf},
     title = {Minimum Hellinger Distance Estimates for Parametric Models},
     journal = {Ann. Statist.},
     volume = {5},
     number = {1},
     year = {1977},
     pages = { 445-463},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343842}
}
Beran, Rudolf. Minimum Hellinger Distance Estimates for Parametric Models. Ann. Statist., Tome 5 (1977) no. 1, pp.  445-463. http://gdmltest.u-ga.fr/item/1176343842/