Distribution and Expected Value of the Rank of a Concomitant of an Order Statistic
David, H. A. ; O'Connell, M. J. ; Yang, S. S.
Ann. Statist., Tome 5 (1977) no. 1, p. 216-223 / Harvested from Project Euclid
Let $(X_i, Y_i)$ be $n$ independent rv's having a common bivariate distribution. When the $X_i$ are arranged in nondecreasing order as the order statistics $X_{r:n} (r = 1,2,\cdots, n)$, the $Y$-variate $Y_{\lbrack r:n\rbrack}$ paired with $X_{r:n}$ is termed the concomitant of the $r$th order statistic. The small-sample theory of the distribution and expected value of the rank $R_{r:n}$ of $Y_{\lbrack r:n\rbrack}$ is studied. In the special case of bivariate normality an illustrative table of the probability distribution of $R_{r,n}$ is given. A more extensive table of $E(R_{r,n})$ is also provided and it is found that asymptotic results require comparatively small finite-sample corrections even for modest values of $n$. Some applications are briefly indicated.
Publié le : 1977-01-14
Classification:  Order statistics,  concomitants,  ranking,  selection,  bivariate normal,  tables,  62G30,  62F07
@article{1176343756,
     author = {David, H. A. and O'Connell, M. J. and Yang, S. S.},
     title = {Distribution and Expected Value of the Rank of a Concomitant of an Order Statistic},
     journal = {Ann. Statist.},
     volume = {5},
     number = {1},
     year = {1977},
     pages = { 216-223},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343756}
}
David, H. A.; O'Connell, M. J.; Yang, S. S. Distribution and Expected Value of the Rank of a Concomitant of an Order Statistic. Ann. Statist., Tome 5 (1977) no. 1, pp.  216-223. http://gdmltest.u-ga.fr/item/1176343756/