Consistency in Concave Regression
Hanson, D. L. ; Pledger, Gordon
Ann. Statist., Tome 4 (1976) no. 1, p. 1038-1050 / Harvested from Project Euclid
For each $t$ in some subinterval $T$ of the real line let $F_t$ be a distribution function with mean $m(t)$. Suppose $m(t)$ is concave. Let $t_1, t_2, \cdots$ be a sequence of points in $T$ and let $Y_1, Y_2, \cdots$ be an independent sequence of random variables such that the distribution function of $Y_k$ is $F_{t_k}$. We consider estimators $m_n(t) = m_n(t; Y_1, \cdots, Y_n)$ which are concave in $t$ and which minimize $\sum^n_{i=1} \lbrack m_n(t_i; Y_1, \cdots, Y_n) - Y_i\rbrack^2$ over the class of concave functions. We investigate their consistency and the convergence of $\{m_n'(t)\}$ to $m'(t)$.
Publié le : 1976-11-14
Classification:  Concave,  convex,  nonparametric regression,  concave regression,  convex regression,  consistency,  regression,  62G05,  90C20
@article{1176343640,
     author = {Hanson, D. L. and Pledger, Gordon},
     title = {Consistency in Concave Regression},
     journal = {Ann. Statist.},
     volume = {4},
     number = {1},
     year = {1976},
     pages = { 1038-1050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343640}
}
Hanson, D. L.; Pledger, Gordon. Consistency in Concave Regression. Ann. Statist., Tome 4 (1976) no. 1, pp.  1038-1050. http://gdmltest.u-ga.fr/item/1176343640/