Borel Cross-Sections and Maximal Invariants
Bondar, James V.
Ann. Statist., Tome 4 (1976) no. 1, p. 866-877 / Harvested from Project Euclid
A measurable cross-section for orbits of a sample space under a free (exact) transformation group is shown to exist under topological regularity conditions. This is used to represent the sample space as essentially the product of a maximal invariant and an equivariant part, which implies Stein's representation for the density of the maximal invariant.
Publié le : 1976-09-14
Classification:  Cross-section of orbits,  disintegration of measure,  maximal invariant,  62A05,  28A50,  57E20
@article{1176343585,
     author = {Bondar, James V.},
     title = {Borel Cross-Sections and Maximal Invariants},
     journal = {Ann. Statist.},
     volume = {4},
     number = {1},
     year = {1976},
     pages = { 866-877},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343585}
}
Bondar, James V. Borel Cross-Sections and Maximal Invariants. Ann. Statist., Tome 4 (1976) no. 1, pp.  866-877. http://gdmltest.u-ga.fr/item/1176343585/