$L_1$ Rates of Convergence for Linear Rank Statistics
Erickson, R. V. ; Koul, H. L.
Ann. Statist., Tome 4 (1976) no. 1, p. 771-774 / Harvested from Project Euclid
This paper gives rates of convergence for the $L_1$ distances between the distributions of standardized linear rank statistics and the standard normal random variable. These rates are $O(N^{-\frac{1}{2}})$ under various conditions on the score function and the distributions of the underlying observations.
Publié le : 1976-07-14
Classification:  Linear rank statistics,  $L_1$ rates for asymptotic normality,  60F05,  62G99
@article{1176343549,
     author = {Erickson, R. V. and Koul, H. L.},
     title = {$L\_1$ Rates of Convergence for Linear Rank Statistics},
     journal = {Ann. Statist.},
     volume = {4},
     number = {1},
     year = {1976},
     pages = { 771-774},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343549}
}
Erickson, R. V.; Koul, H. L. $L_1$ Rates of Convergence for Linear Rank Statistics. Ann. Statist., Tome 4 (1976) no. 1, pp.  771-774. http://gdmltest.u-ga.fr/item/1176343549/