Importance Sampling in the Monte Carlo Study of Sequential Tests
Siegmund, D.
Ann. Statist., Tome 4 (1976) no. 1, p. 673-684 / Harvested from Project Euclid
Let $x_1, x_2,\cdots$ be independent random variables which under $P_\theta$ have probability density function of the form $P_\theta\{x_k \in dx\} = \exp(\theta x - \Psi(\theta)) dH(x)$, where $\Psi$ is normalized so that $\Psi(0) = \Psi'(0) = 0.$ Let $a \leqq 0 < b, s_n = \sum^n_1 x_k$, and $T = \inf \{n: s_n \not\in (a, b)\}.$ For $u < 0$, an unbiased Monte Carlo estimate of $P_u(s_T \geqq b)$ is the average of independent $P_\theta$-realizations of $I_{\{s_T \geqq b\}} \exp\{(u - \theta)s_T - T(\Psi(u) - \Psi(\theta))\}$. It is shown that the choice $\theta = w$, where $w > 0$ is defined by $\Psi(w) = \Psi(u)$, is an asymptotically (as $b \rightarrow \infty)$ optimal choice of $\theta$ in a sense to be defined. Implications of this result for Monte Carlo studies in sequential analysis are discussed.
Publié le : 1976-07-14
Classification:  Sequential test,  Monte Carlo,  importance sampling,  62L10,  65C05
@article{1176343541,
     author = {Siegmund, D.},
     title = {Importance Sampling in the Monte Carlo Study of Sequential Tests},
     journal = {Ann. Statist.},
     volume = {4},
     number = {1},
     year = {1976},
     pages = { 673-684},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343541}
}
Siegmund, D. Importance Sampling in the Monte Carlo Study of Sequential Tests. Ann. Statist., Tome 4 (1976) no. 1, pp.  673-684. http://gdmltest.u-ga.fr/item/1176343541/