Tail Probabilities of Noncentral Quadratic Forms
Beran, Rudolf
Ann. Statist., Tome 3 (1975) no. 1, p. 969-974 / Harvested from Project Euclid
Let $S(b) = \Sigma r\sigma r^2Xr^2(nr,br^2)$ be a positive linear combination of independent noncentral chi-square random variables. This note derives two representations for the tail probabilities P[S(b) >x], a Taylor series in the noncentrality parameters and a limiting form of this series for large x. An application of the latter result to statistical tests of Cramer-von Mises type is discussed.
Publié le : 1975-07-14
Classification:  Tail probabilities,  noncentral quadratic forms,  Cramer-von Mises tests,  60E05,  62G10
@article{1176343199,
     author = {Beran, Rudolf},
     title = {Tail Probabilities of Noncentral Quadratic Forms},
     journal = {Ann. Statist.},
     volume = {3},
     number = {1},
     year = {1975},
     pages = { 969-974},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343199}
}
Beran, Rudolf. Tail Probabilities of Noncentral Quadratic Forms. Ann. Statist., Tome 3 (1975) no. 1, pp.  969-974. http://gdmltest.u-ga.fr/item/1176343199/