Loading [MathJax]/extensions/MathZoom.js
An Approximate Inverse for the Covariance Matrix of Moving Average and Autoregressive Processes
Shaman, Paul
Ann. Statist., Tome 3 (1975) no. 1, p. 532-538 / Harvested from Project Euclid
Let $\mathbf{\Sigma}$ denote the convariance matrix of a vector $\mathbf{x} = (x_1, \cdots, x_T)'$ of $T$ successive observations from a stationary process $\{ x_t\}$ with continuous positive spectral density $f(\lambda)$. Let $\mathbf{\Gamma}$ be the $T \times T$ matrix with elements $\gamma(s, t) = (2\pi)^{-2} \int^\pi_{-\pi} e^{i\lambda (s-t)} f^{-1}(\lambda) d\lambda$. The properties of $\mathbf{\Gamma}$ considered as an approximate inverse of $\mathbf{\Sigma}$ are studied. When $\{ x_t\}$ is a$(n)$ moving average (autoregressive) process of order $q$, rows (columns) $q + 1, \cdots, T - q$ of $\mathbf{\Sigma\Gamma} - \mathbf{I}$ are zero vectors. In this case $\mathbf{\Sigma\Gamma} - \mathbf{I}$ has $2q$ positive characteristic roots which approach paired positive limiting values as $T \rightarrow \infty$ if the roots of $\sum^q_{j=0} \beta_j z^{q-j} = 0$ are less than 1 in absolute value, where $\beta_1, \cdots, \beta_q$ are the coefficients of the process. Statistical properties of $\mathbf{x'Tx} - \mathbf{x'\Sigma}^{-1} \mathbf{x}$ and $\mathbf{x'\Gamma x}/ \mathbf{x'\Sigma}^{-1} \mathbf{x}$ are also discussed.
Publié le : 1975-03-14
Classification:  Stationary process,  covariance matrix,  approximate inverse,  autoregressive-moving average (ARMA) process,  characteristic roots,  62M10,  15A09
@article{1176343085,
     author = {Shaman, Paul},
     title = {An Approximate Inverse for the Covariance Matrix of Moving Average and Autoregressive Processes},
     journal = {Ann. Statist.},
     volume = {3},
     number = {1},
     year = {1975},
     pages = { 532-538},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343085}
}
Shaman, Paul. An Approximate Inverse for the Covariance Matrix of Moving Average and Autoregressive Processes. Ann. Statist., Tome 3 (1975) no. 1, pp.  532-538. http://gdmltest.u-ga.fr/item/1176343085/