On the Use of Ranks for Testing the Coincidence of Several Regression Lines
Adichie, J. N.
Ann. Statist., Tome 3 (1975) no. 1, p. 521-527 / Harvested from Project Euclid
For several linear regression lines $Y_{ij} = \alpha_i + \beta_i(x_{ij} - x{_i.}) + Z_{ij}, i = 1,\cdots, k; j = 1, \cdot, n_i$, a statistic for testing $\alpha_i = \alpha, \beta_i = \beta$ is constructed based on the simultaneous ranking of all the observations. The asymptotic properties of the criterion are also studied. The results are, however, not directly applicable to the general design model $Y_{ij} = \alpha_i + \beta_i x_{ij} + Z_{ij}$, unless it is assumed that the group means $x_i$. are all equal.
Publié le : 1975-03-14
Classification:  Linear rank statistic,  score generating function,  bounded in probability,  least squares estimates,  asymptotic efficiency,  62G10,  62G20,  62E20,  62J05
@article{1176343083,
     author = {Adichie, J. N.},
     title = {On the Use of Ranks for Testing the Coincidence of Several Regression Lines},
     journal = {Ann. Statist.},
     volume = {3},
     number = {1},
     year = {1975},
     pages = { 521-527},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343083}
}
Adichie, J. N. On the Use of Ranks for Testing the Coincidence of Several Regression Lines. Ann. Statist., Tome 3 (1975) no. 1, pp.  521-527. http://gdmltest.u-ga.fr/item/1176343083/