On a Class of Uniformly Admissible Estimators for Finite Populations
Sekkappan, Rm. ; Thompson, M. E.
Ann. Statist., Tome 3 (1975) no. 1, p. 492-499 / Harvested from Project Euclid
Let $C'$ be a class of sampling designs of fixed expected sample size $n$ and fixed inclusion probabilities $\pi_i$ and $C$ be the subclass of $C'$ consisting of designs of fixed size $n$ and inclusion probabilities $\pi_i$. Then it is established that the pair $(e^\ast, p^\ast)$ where $p^\ast \in C$ and $e^\ast(x, \mathbf{x}) = \sigma_{i \in s} b_i x_i, b_1 > 1$, and $\sigma^N_1 (b_i)^{-1} = E(n(s)) = n$, is strictly uniformly admissible among pairs $(e_1, p_1)$ where $p_1 \in C'$ and $e_1$ is any measurable estimate.
Publié le : 1975-03-14
Classification:  62,  D05,  Uniform admissibility,  finite populations,  unequal probability sampling,  Horvitz-Thompson estimator
@article{1176343078,
     author = {Sekkappan, Rm. and Thompson, M. E.},
     title = {On a Class of Uniformly Admissible Estimators for Finite Populations},
     journal = {Ann. Statist.},
     volume = {3},
     number = {1},
     year = {1975},
     pages = { 492-499},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176343078}
}
Sekkappan, Rm.; Thompson, M. E. On a Class of Uniformly Admissible Estimators for Finite Populations. Ann. Statist., Tome 3 (1975) no. 1, pp.  492-499. http://gdmltest.u-ga.fr/item/1176343078/