Fisher Information and Spline Interpolation
Huber, Peter J.
Ann. Statist., Tome 2 (1974) no. 1, p. 1029-1033 / Harvested from Project Euclid
It is shown that among all cumulative distribution functions passing through $k \geqq 2$ given points there is a unique one with minimal Fisher information; it is obtained by a curious type of spline interpolation. This answers some questions raisd by D. G. Kendall and J. W. Tukey.
Publié le : 1974-09-14
Classification:  Fisher information,  splines,  interpolation,  nonparametric estimation,  62G05,  41A15
@article{1176342822,
     author = {Huber, Peter J.},
     title = {Fisher Information and Spline Interpolation},
     journal = {Ann. Statist.},
     volume = {2},
     number = {1},
     year = {1974},
     pages = { 1029-1033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176342822}
}
Huber, Peter J. Fisher Information and Spline Interpolation. Ann. Statist., Tome 2 (1974) no. 1, pp.  1029-1033. http://gdmltest.u-ga.fr/item/1176342822/