A Monotonicity Property of the Power Functions of Some Invariant Tests for MANOVA
Eaton, Morris L. ; Perlman, Michael D.
Ann. Statist., Tome 2 (1974) no. 1, p. 1022-1028 / Harvested from Project Euclid
The main result of the current research describes a monotonicity property of certain invariant tests for the multivariate analysis of variance problem. Suppose $X: r \times p$ has a normal distribution, $EX = \Theta$ and the rows of $X$ are independent, each with unknown covariance matrix $\Sigma: p \times p$. Let $S = p \times p$ have a Wishart distribution $W(\Sigma, p, n), S$ independent of $X$. If $K$ is the acceptance region of an invariant test for the null hypothesis $\Theta = 0$, let $\rho_K(\delta)$ denote the power function of $K$, where $\delta = (\delta_1, \cdots, \delta_t), t \equiv \min (r, p)$ and $\delta_1^2,\cdots,\delta_t^2$ are the $t$ largest characteristic roots of $\Theta\sigma^{-1}\Theta'$. A main result is THEOREM. If $K$ is a convex set (in $(X, S))$, then $\rho_K(\delta)$ is a Schur-convex function of $\delta$. Standard tests to which the above theorem can be applied include the Roy maximum root test and the Lawley-Hotelling trace test.
Publié le : 1974-09-14
Classification:  Monotonicity,  power function,  invariant tests,  MANOVA,  convex set,  $G$-orbit,  Schur-convex,  62H15
@article{1176342821,
     author = {Eaton, Morris L. and Perlman, Michael D.},
     title = {A Monotonicity Property of the Power Functions of Some Invariant Tests for MANOVA},
     journal = {Ann. Statist.},
     volume = {2},
     number = {1},
     year = {1974},
     pages = { 1022-1028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176342821}
}
Eaton, Morris L.; Perlman, Michael D. A Monotonicity Property of the Power Functions of Some Invariant Tests for MANOVA. Ann. Statist., Tome 2 (1974) no. 1, pp.  1022-1028. http://gdmltest.u-ga.fr/item/1176342821/