Admissibility properties of the M.L.E. for the parameters of $m$ independent binomial distributions (when these parameters are known to be ordered) are determined for certain convex loss functions. It is shown that, except in two special cases, the M.L.E. is inadmissible whenever the total sample size is 7 or more.
Publié le : 1974-07-14
Classification:
Maximum likelihood estimate,
admissibility,
binomial distribution,
Bayes,
ordered parameters,
convex loss,
62C15,
62C10
@article{1176342771,
author = {Sackrowitz, H. and Strawderman, W.},
title = {On the Admissibility of the M.L.E. for Ordered Binomial Parameters},
journal = {Ann. Statist.},
volume = {2},
number = {1},
year = {1974},
pages = { 822-828},
language = {en},
url = {http://dml.mathdoc.fr/item/1176342771}
}
Sackrowitz, H.; Strawderman, W. On the Admissibility of the M.L.E. for Ordered Binomial Parameters. Ann. Statist., Tome 2 (1974) no. 1, pp. 822-828. http://gdmltest.u-ga.fr/item/1176342771/