On Sample Quantiles from a Regularly Varying Distribution Function
Haan, Laurens De
Ann. Statist., Tome 2 (1974) no. 1, p. 815-818 / Harvested from Project Euclid
A law of the iterated logarithm is proved for sample $p$-quantiles when the probability distribution function varies regularly at $\xi$ with $F(\xi) = p$.
Publié le : 1974-07-14
Classification:  Order statistics,  law of the iterated logarithm,  regular variation,  60F15,  62G30,  26A12
@article{1176342769,
     author = {Haan, Laurens De},
     title = {On Sample Quantiles from a Regularly Varying Distribution Function},
     journal = {Ann. Statist.},
     volume = {2},
     number = {1},
     year = {1974},
     pages = { 815-818},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176342769}
}
Haan, Laurens De. On Sample Quantiles from a Regularly Varying Distribution Function. Ann. Statist., Tome 2 (1974) no. 1, pp.  815-818. http://gdmltest.u-ga.fr/item/1176342769/