Let $f(x)$ be a continuous, strictly positive probability density function over an interval $\lbrack a, b\rbrack$ and $F(x)$ its associated $\operatorname{cdf}$. Suppose $\{\phi_i(x)\}^\infty_{i=0}$ is a complete orthonormal basis for $L_2\lbrack a, b\rbrack$ and that $f(x)$ and $\log f(x)$ have orthogonal series expansions, in the $\phi_i$'s, over $\lbrack a, b\rbrack$. Estimators for $f(x)$ and $F(x)$ are chosen from the canonical exponential family of distributions generated by $\{\phi_i(x)\}^\infty_{i=0}$, and convergence theorems are presented for these estimators in the special case of Legendre polynomials over $\lbrack -1, 1\rbrack$.
Publié le : 1974-05-14
Classification:
Densities,
estimation of densities,
cumulative distribution functions,
estimation of distributions,
restricted maximum likelihood estimation,
exponential families,
62G05,
62G99,
41A10,
42A08
@article{1176342706,
author = {Crain, Bradford R.},
title = {Estimation of Distributions Using Orthogonal Expansions},
journal = {Ann. Statist.},
volume = {2},
number = {1},
year = {1974},
pages = { 454-463},
language = {en},
url = {http://dml.mathdoc.fr/item/1176342706}
}
Crain, Bradford R. Estimation of Distributions Using Orthogonal Expansions. Ann. Statist., Tome 2 (1974) no. 1, pp. 454-463. http://gdmltest.u-ga.fr/item/1176342706/