A Convergence Theorem in the Theory of $D$-Optimum Experimental Designs
Pazman, A.
Ann. Statist., Tome 2 (1974) no. 1, p. 216-218 / Harvested from Project Euclid
It is proved that in a sequential design of a regression problem the variance of the 1.s. estimate for the response surface in the $n$th sequential point tends to zero with $n \rightarrow \infty$. This allows the proof of the convergence of certain procedures for computing $D_s$-optimum designs.
Publié le : 1974-01-14
Classification:  Regression,  regression designs,  optimum experimental designs,  variance,  least squares
@article{1176342628,
     author = {Pazman, A.},
     title = {A Convergence Theorem in the Theory of $D$-Optimum Experimental Designs},
     journal = {Ann. Statist.},
     volume = {2},
     number = {1},
     year = {1974},
     pages = { 216-218},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176342628}
}
Pazman, A. A Convergence Theorem in the Theory of $D$-Optimum Experimental Designs. Ann. Statist., Tome 2 (1974) no. 1, pp.  216-218. http://gdmltest.u-ga.fr/item/1176342628/