Minimax Estimation of Powers of the Variance of a Normal Population Under Squared Error Loss
Strawderman, William E.
Ann. Statist., Tome 2 (1974) no. 1, p. 190-198 / Harvested from Project Euclid
The problem of estimating powers of the variance of a normal distribution is considered when loss is essentially squared error. A class of minimax estimators is found by extending the techniques of Stein. It is shown, at least for estimating the variance, that a subclass of the above consists of generalized Bayes estimators.
Publié le : 1974-01-14
Classification:  Minimax,  generalized Bayes,  variance,  invariance,  point estimation,  62F10,  62C99
@article{1176342625,
     author = {Strawderman, William E.},
     title = {Minimax Estimation of Powers of the Variance of a Normal Population Under Squared Error Loss},
     journal = {Ann. Statist.},
     volume = {2},
     number = {1},
     year = {1974},
     pages = { 190-198},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176342625}
}
Strawderman, William E. Minimax Estimation of Powers of the Variance of a Normal Population Under Squared Error Loss. Ann. Statist., Tome 2 (1974) no. 1, pp.  190-198. http://gdmltest.u-ga.fr/item/1176342625/