Proper Bayes Minimax Estimators of the Multivariate Normal Mean Vector for the Case of Common Unknown Variances
Strawderman, William E.
Ann. Statist., Tome 1 (1973) no. 2, p. 1189-1194 / Harvested from Project Euclid
We investigate the problem of estimating the mean vector $\mathbf{\theta}$ of a multivariate normal distribution with covariance matrix equal to $\sigma^2\mathbf{I}_p, \sigma^2$ unknown, and loss $\|\delta - \mathbf{\theta}\|^2/\sigma^2$. We first find a class of minimax estimators for this problem which enlarges a class given by Baranchik. This result is then used to show that for sufficiently large sample sizes (which never need exceed 4) proper Bayes minimax estimators exist for $\mathbf{\theta}$ if $p \geqq 5$.
Publié le : 1973-11-14
Classification: 
@article{1176342567,
     author = {Strawderman, William E.},
     title = {Proper Bayes Minimax Estimators of the Multivariate Normal Mean Vector for the Case of Common Unknown Variances},
     journal = {Ann. Statist.},
     volume = {1},
     number = {2},
     year = {1973},
     pages = { 1189-1194},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176342567}
}
Strawderman, William E. Proper Bayes Minimax Estimators of the Multivariate Normal Mean Vector for the Case of Common Unknown Variances. Ann. Statist., Tome 1 (1973) no. 2, pp.  1189-1194. http://gdmltest.u-ga.fr/item/1176342567/