A Note on Two-Sided Confidence Intervals for Linear Functions of the Normal Mean and Variance
Land, C. E. ; Johnson, B. R. ; Joshi, V. M.
Ann. Statist., Tome 1 (1973) no. 2, p. 940-943 / Harvested from Project Euclid
The confidence sets for linear functions $\mu + \lambda\sigma^2$ of the mean $\mu$ and variance $\sigma^2$ of a normal distribution, defined in terms of the uniformly most powerful unbiased level $\alpha$ tests of hypotheses of form $H_0(\lambda, m): \mu + \lambda\sigma^2 = m$ against the two-sided alternative $H_1(\lambda, m): \mu + \lambda\sigma^2 \neq m$ for $-\infty < m < \infty$, for fixed $\alpha$ and $\lambda$, are shown to be intervals if the number of degrees of freedom for estimating $\sigma^2$ is $\geqq 2$.
Publié le : 1973-09-14
Classification:  Confidence intervals,  normal distribution,  linear functions of mean and variance,  lognormal distribution,  62F25,  62F05
@article{1176342514,
     author = {Land, C. E. and Johnson, B. R. and Joshi, V. M.},
     title = {A Note on Two-Sided Confidence Intervals for Linear Functions of the Normal Mean and Variance},
     journal = {Ann. Statist.},
     volume = {1},
     number = {2},
     year = {1973},
     pages = { 940-943},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176342514}
}
Land, C. E.; Johnson, B. R.; Joshi, V. M. A Note on Two-Sided Confidence Intervals for Linear Functions of the Normal Mean and Variance. Ann. Statist., Tome 1 (1973) no. 2, pp.  940-943. http://gdmltest.u-ga.fr/item/1176342514/