On Some Properties of Hammersley's Estimator of an Integer Mean
Khan, Rasul A.
Ann. Statist., Tome 1 (1973) no. 2, p. 756-762 / Harvested from Project Euclid
Let $X_1, \cdots, X_n$ be i.i.d. $N(i, 1), i = 0, \pm 1, \pm 2,\cdots$. Hammersley [2] proposed $\lbrack\bar{X}_n\rbrack$, the nearest integer to the sample mean, as an estimator of $i$. It is proved that $d$ is minimax and admissible relative to zero-one loss. However, it is shown that relative to squared error loss, the estimator is neither admissible nor minimax.
Publié le : 1973-07-14
Classification:  Loss function,  minimax,  admissible,  discrete normal prior,  Bayes estimator,  Bayes risk,  62C15,  62F10
@article{1176342471,
     author = {Khan, Rasul A.},
     title = {On Some Properties of Hammersley's Estimator of an Integer Mean},
     journal = {Ann. Statist.},
     volume = {1},
     number = {2},
     year = {1973},
     pages = { 756-762},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176342471}
}
Khan, Rasul A. On Some Properties of Hammersley's Estimator of an Integer Mean. Ann. Statist., Tome 1 (1973) no. 2, pp.  756-762. http://gdmltest.u-ga.fr/item/1176342471/