Let $X = (X_1, \cdots, X_n)$ where the $X_i: p \times 1$ are independent random vectors, and let $A: n \times n$ be positive semi-definite symmetric. This paper establishes necessary and sufficient conditions that the random matrix $XAX'$ be positive definite w.p.1. The results are applied to cases where $A$ has a particular form or $X_1, \cdots, X_n$ are i.i.d. In particular, it is shown that in the i.i.d. case, the sample covariance matrix $\sigma(X_i - \bar{X})(X_i - \bar{X})'$ is positive definite w.p. 1 $\operatorname{iff} P\lbrack X_1 \in F\rbrack = 0$ for every proper flat $F \subset R^p$.