On Optimal B-Robust Influence Functions in Semiparametric Models
Shen, Larry Z.
Ann. Statist., Tome 23 (1995) no. 6, p. 968-989 / Harvested from Project Euclid
Bounded influence functions are used for robust estimation in semiparametric models. In this paper, we generalize Hampel's variational problem to semiparametric models and define the optimal B-robust influence function as the one solving the variational problem. We identify the lowest bounds for influence functions and establish the existence and uniqueness of the optimal influence functions in general semiparametric models. Explicit optimal influence functions are given for a special case. Examples are provided to illustrate the procedures for calculating the optimal influence functions and for constructing the corresponding optimal estimators.
Publié le : 1995-06-14
Classification:  B-robust,  optimal bounded influence function,  Hampel's problem,  most robust estimate,  semiparametric models,  62F35,  62G35
@article{1176324631,
     author = {Shen, Larry Z.},
     title = {On Optimal B-Robust Influence Functions in Semiparametric Models},
     journal = {Ann. Statist.},
     volume = {23},
     number = {6},
     year = {1995},
     pages = { 968-989},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176324631}
}
Shen, Larry Z. On Optimal B-Robust Influence Functions in Semiparametric Models. Ann. Statist., Tome 23 (1995) no. 6, pp.  968-989. http://gdmltest.u-ga.fr/item/1176324631/