Efficient Estimation of Monotone Boundaries
Korostelev, A. P. ; Simar, L. ; Tsybakov, A. B.
Ann. Statist., Tome 23 (1995) no. 6, p. 476-489 / Harvested from Project Euclid
Let $g: \lbrack 0, 1\rbrack \rightarrow \lbrack 0, 1\rbrack$ be a monotone nondecreasing function and let $G$ be the closure of the set $\{(x, y) \in \lbrack 0, 1\rbrack \times \lbrack 0, 1\rbrack: 0 \leq y \leq g (x)\}$. We consider the problem of estimating the set $G$ from a sample of i.i.d. observations uniformly distributed in $G$. The estimation error is measured in the Hausdorff metric. We propose the estimator which is asymptotically efficient in the minimax sense.
Publié le : 1995-04-14
Classification:  Monotone boundary,  free disposal hull,  Hausdorff distance,  efficiency,  minimum risk,  estimation of support of a density,  62G05,  62G20
@article{1176324531,
     author = {Korostelev, A. P. and Simar, L. and Tsybakov, A. B.},
     title = {Efficient Estimation of Monotone Boundaries},
     journal = {Ann. Statist.},
     volume = {23},
     number = {6},
     year = {1995},
     pages = { 476-489},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176324531}
}
Korostelev, A. P.; Simar, L.; Tsybakov, A. B. Efficient Estimation of Monotone Boundaries. Ann. Statist., Tome 23 (1995) no. 6, pp.  476-489. http://gdmltest.u-ga.fr/item/1176324531/