Regular algebras of dimension 4 and their $A_\infty$ -Ext-algebras
Lu, D.-M. ; Palmieri, J. H. ; Wu, Q.-S. ; Zhang, J. J.
Duke Math. J., Tome 136 (2007) no. 1, p. 537-584 / Harvested from Project Euclid
We construct four families of Artin-Schelter (AS) regular algebras of global dimension $4$ . This is a complete list of AS regular algebras of global dimension $4$ which are generated by two elements of degree $1$ and whose Ext-algebra satisfies certain “generic” conditions. These algebras are also strongly Noetherian, Auslander regular, and Cohen-Macaulay. One of the main tools is Keller's higher-multiplication theorem on $A_\infty$ -Ext-algebras
Publié le : 2007-04-15
Classification:  16E65,  16W50,  16E45,  14A22,  16E10
@article{1175865520,
     author = {Lu, D.-M. and Palmieri, J. H. and Wu, Q.-S. and Zhang, J. J.},
     title = {Regular algebras of dimension 4 and their $A\_\infty$ -Ext-algebras},
     journal = {Duke Math. J.},
     volume = {136},
     number = {1},
     year = {2007},
     pages = { 537-584},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1175865520}
}
Lu, D.-M.; Palmieri, J. H.; Wu, Q.-S.; Zhang, J. J. Regular algebras of dimension 4 and their $A_\infty$ -Ext-algebras. Duke Math. J., Tome 136 (2007) no. 1, pp.  537-584. http://gdmltest.u-ga.fr/item/1175865520/