The Inverse Mean Curvature Flow in Robertson-Walker Spaces and its Application
Gerhardt, Claus
Methods Appl. Anal., Tome 13 (2006) no. 1, p. 19-28 / Harvested from Project Euclid
We consider the inverse mean curvature flow in Robertson-Walker spacetimes that satisfy the Einstein equations and have a big crunch singularity and prove that under natural conditions the rescaled inverse mean curvature flow provides a smooth transition from big crunch to big bang. We also construct an example showing that in general the transition flow is only of class $C^3$.
Publié le : 2006-03-14
Classification:  Lorentzian manifold,  transition from big crunch to big bang,  cyclic universe,  general relativity,  inverse mean curvature flow,  ARW spacetimes,  35J60,  53C21,  53C44,  53C50,  58J05
@article{1175797479,
     author = {Gerhardt, Claus},
     title = {The Inverse Mean Curvature Flow in Robertson-Walker Spaces and its Application},
     journal = {Methods Appl. Anal.},
     volume = {13},
     number = {1},
     year = {2006},
     pages = { 19-28},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1175797479}
}
Gerhardt, Claus. The Inverse Mean Curvature Flow in Robertson-Walker Spaces and its Application. Methods Appl. Anal., Tome 13 (2006) no. 1, pp.  19-28. http://gdmltest.u-ga.fr/item/1175797479/