Hyperbolic Conservation Laws on Manifolds: Total Variation Estimates and the Finite Volume Method
Amorim, Paulo ; Ben-Artzi, Matania ; LeFloch, Philippe G.
Methods Appl. Anal., Tome 12 (2005) no. 1, p. 291-324 / Harvested from Project Euclid
This paper investigates some properties of entropy solutions of hyperbolic conservation laws on a Riemannian manifold. First, we generalize the Total Variation Diminishing (TVD) property to manifolds, by deriving conditions on the flux of the conservation law and a given vector field ensuring that the total variation of the solution along the integral curves of the vector field is non-increasing in time. Our results are next specialized to the important case of a flow on the 2-sphere, and examples of flux are discussed. Second, we establish the convergence of the finite volume methods based on numerical flux-functions satisfying monotonicity properties. Our proof requires detailed estimates on the entropy dissipation, and extends to general manifolds an earlier proof by Cockburn, Coquel, and LeFloch in the Euclidian case.
Publié le : 2005-09-14
Classification:  Hyperbolic conservation law,  Riemannian manifold,  entropy solution,  total variation,  finite volume method,  35L65,  74J40,  58J,  76N10
@article{1175797447,
     author = {Amorim, Paulo and Ben-Artzi, Matania and LeFloch, Philippe G.},
     title = {Hyperbolic Conservation Laws on Manifolds: Total Variation Estimates and the Finite Volume Method},
     journal = {Methods Appl. Anal.},
     volume = {12},
     number = {1},
     year = {2005},
     pages = { 291-324},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1175797447}
}
Amorim, Paulo; Ben-Artzi, Matania; LeFloch, Philippe G. Hyperbolic Conservation Laws on Manifolds: Total Variation Estimates and the Finite Volume Method. Methods Appl. Anal., Tome 12 (2005) no. 1, pp.  291-324. http://gdmltest.u-ga.fr/item/1175797447/