On Lerch’s transcendent and the Gaussian random walk
Janssen, A. J. E. M. ; van Leeuwaarden, J. S. H.
Ann. Appl. Probab., Tome 17 (2007) no. 1, p. 421-439 / Harvested from Project Euclid
Let X1, X2, … be independent variables, each having a normal distribution with negative mean −β<0 and variance 1. We consider the partial sums Sn=X1+⋯+Xn, with S0=0, and refer to the process {Sn:n≥0} as the Gaussian random walk. We present explicit expressions for the mean and variance of the maximum M=max {Sn:n≥0}. These expressions are in terms of Taylor series about β=0 with coefficients that involve the Riemann zeta function. Our results extend Kingman’s first-order approximation [Proc. Symp. on Congestion Theory (1965) 137–169] of the mean for β↓0. We build upon the work of Chang and Peres [Ann. Probab. 25 (1997) 787–802], and use Bateman’s formulas on Lerch’s transcendent and Euler–Maclaurin summation as key ingredients.
Publié le : 2007-04-14
Classification:  Gaussian random walk,  all-time maximum,  Lerch’s transcendent,  Riemann zeta function,  Spitzer’s identity,  Euler–Maclaurin summation,  11M06,  30B40,  60G50,  60G51,  65B15
@article{1174323252,
     author = {Janssen, A. J. E. M. and van Leeuwaarden, J. S. H.},
     title = {On Lerch's transcendent and the Gaussian random walk},
     journal = {Ann. Appl. Probab.},
     volume = {17},
     number = {1},
     year = {2007},
     pages = { 421-439},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1174323252}
}
Janssen, A. J. E. M.; van Leeuwaarden, J. S. H. On Lerch’s transcendent and the Gaussian random walk. Ann. Appl. Probab., Tome 17 (2007) no. 1, pp.  421-439. http://gdmltest.u-ga.fr/item/1174323252/