Estimation of Rényi exponents in random cascades
Troutman, Brent M. ; Vecchia, Aldo V.
Bernoulli, Tome 5 (1999) no. 6, p. 191-207 / Harvested from Project Euclid
We consider statistical estimation of the Rényi exponent [math] , which characterizes the scaling behaviour of a singular measure [math] defined on a subset of [math] . The Rényi exponent is defined to be [math] , assuming that this limit exists, where [math] and, for [math] , [math] are the cubes of a [math] -coordinate mesh that intersect the support of [math] . In particular, we demonstrate asymptotic normality of the least-squares estimator of [math] when the measure [math] is generated by a particular class of multiplicative random cascades, a result which allows construction of interval estimates and application of hypothesis tests for this scaling exponent. Simulation results illustrating this asymptotic normality are presented.
Publié le : 1999-04-14
Classification:  least-squares estimation,  multifractal,  multiplicative process,  random cascade,  Rényi exponent,  scaling exponent
@article{1173147902,
     author = {Troutman, Brent M. and Vecchia, Aldo V.},
     title = {Estimation of R\'enyi exponents in random cascades},
     journal = {Bernoulli},
     volume = {5},
     number = {6},
     year = {1999},
     pages = { 191-207},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1173147902}
}
Troutman, Brent M.; Vecchia, Aldo V. Estimation of Rényi exponents in random cascades. Bernoulli, Tome 5 (1999) no. 6, pp.  191-207. http://gdmltest.u-ga.fr/item/1173147902/