A stability theorem for the index of sphere bundles
Tanaka, Ryuichi
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 177-182 / Harvested from Project Euclid
We prove that the index of every $m$-dimensional vector bundle over $B$ is equal to $m$ if $m \geq 2 dim{B}$. We also determine the smallest integer $k$ for which every $m$-dimensional vector bundle with $m\geq k$ is I-stable in the cases $B=FP^n$ and $B=S^n$.
Publié le : 2007-03-14
Classification:  Sphere bundle,  $\mathbb Z/2$ -map,  radial solutions,  index,  55P91,  55R25
@article{1172852252,
     author = {Tanaka, Ryuichi},
     title = {A stability theorem for the index of sphere bundles},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 177-182},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1172852252}
}
Tanaka, Ryuichi. A stability theorem for the index of sphere bundles. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  177-182. http://gdmltest.u-ga.fr/item/1172852252/