Maximum modulus principles for radial solutions of quasilinear and fully nonlinear singular P.D.E's
Kałamajska, Agnieszka ; Lira, Karol
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 157-176 / Harvested from Project Euclid
We obtain maximum modulus principles for solutions to some quasilinear and fully nonlinear ODEs and discuss their applications to quasilinear PDEs involving $p$-Laplacian. Our approach is convenient to deal with singular PDEs. Its idea can be tracked back to the old theory by Szegö on orthogonal polynomials.
Publié le : 2007-03-14
Classification:  maximum principles,  quasilinear PDEs,  radial solutions,  Sturm-Liouville problem,  $p$-Laplacian,  35B50,  33C45,  35J15,  34C11
@article{1172852251,
     author = {Ka\l amajska, Agnieszka and Lira, Karol},
     title = {Maximum modulus principles for radial solutions of
quasilinear and fully nonlinear singular P.D.E's},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 157-176},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1172852251}
}
Kałamajska, Agnieszka; Lira, Karol. Maximum modulus principles for radial solutions of
quasilinear and fully nonlinear singular P.D.E's. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  157-176. http://gdmltest.u-ga.fr/item/1172852251/