On an Elliptic Equation Involving a Kirchhoff Term and a Singular Perturbation
Corrêa, Francisco Julio S.A.
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 15-24 / Harvested from Project Euclid
In this paper we consider the existence of positive solutions for the following class of singular elliptic nonlocal problems of Kirchhoff-type $$ \left\{\begin{array}{rclcc} -M(\|u\|^{2})\Delta u = \frac{h(x)}{u^{\gamma}}+k(x)u^{\alpha} \mbox{in} \Omega ,\\ u > 0 \mbox{in} \Omega ,\\ u = 0 \mbox{on} \partial\Omega ,\\ \end{array} \right. $$ where $\Omega \subset \mathbb R^{N}, N \geq 2,$ is a bounded smooth domain, $M:\mathbb{R}\rightarrow \mathbb{R}$ is a continuous function and $\|u\|^{2}=\int_{\Omega}|\nabla u|^{2}$ is the usual norm in $H^{1}_{0}(\Omega )$. The main tools used are the Galerkin method and a Hardy-Sobolev inequality.
Publié le : 2007-03-14
Classification:  Kirchhoff equation,  Galerkin method,  Hardy-Sobolev inequality,  34B15,  34B16,,  35J65
@article{1172852241,
     author = {Corr\^ea, Francisco Julio S.A.},
     title = {On an Elliptic Equation Involving a Kirchhoff
Term and a Singular Perturbation},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 15-24},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1172852241}
}
Corrêa, Francisco Julio S.A. On an Elliptic Equation Involving a Kirchhoff
Term and a Singular Perturbation. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  15-24. http://gdmltest.u-ga.fr/item/1172852241/