Stability for generalized Jensen functional equations and isomorphisms between $C^*$-algebras
Kim, Hark-Mahn
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 1-14 / Harvested from Project Euclid
Let $\mathcal{A}$ be a unital $C^*$-algebra and let $M_1$ and $M_2$ be Banach left $\mathcal{A}$-modules. In this paper, we prove the generalized Hyers-Ulam-Rassias stability for a generalized form, \begin{eqnarray} g\Big( \sum_{i=1}^{n}r_i x_i \Big)= \sum_{i=1}^{n} s_i g(x_i) \end{eqnarray} of a Cauchy-Jensen functional equation $2g(\frac{x+y}{2})=g(x)+g(y)$ for a mapping $g : M_1 \rightarrow M_2.$ As an application, we show that every approximate $C^*$-algebra isomorphism $h:\mathcal{A} \rightarrow \mathcal{B}$ between unital $C^*$-algebras is a $C^*$-algebra isomorphism when $h$ satisfies some regular conditions.
Publié le : 2007-03-14
Classification:  Hyers-Ulam-Rassias stability,  Cauchy-Jensen functional equation,  unitary group,  $C^*$-algebra isomorphism,  39B82,  46L05,  47B48
@article{1172852240,
     author = {Kim, Hark-Mahn},
     title = {Stability for generalized Jensen functional equations
and isomorphisms between $C^*$-algebras},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 1-14},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1172852240}
}
Kim, Hark-Mahn. Stability for generalized Jensen functional equations
and isomorphisms between $C^*$-algebras. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  1-14. http://gdmltest.u-ga.fr/item/1172852240/