Lp estimation of the diffusion coefficient
Hofmann, Marc
Bernoulli, Tome 5 (1999) no. 6, p. 447-481 / Harvested from Project Euclid
We study the functional estimation of the space-dependent diffusion coefficient in a one-dimensional framework. The sample path is observed at discrete times. We study global [math] -loss errors [math] over Besov spaces [math] . We show that, under suitable conditions, the minimax rate of convergence is the usual [math] . Linking our model to nonparametric regression, we provide an estimating procedure based on a linear wavelet method which is optimal in the minimax sense.
Publié le : 1999-06-14
Classification:  Besov spaces,  diffusion processes,  local time,  minimax estimation,  nonparametric regression,  wavelets on the internal,  wavelet orthonormal bases
@article{1172617199,
     author = {Hofmann, Marc},
     title = {Lp estimation of the diffusion coefficient},
     journal = {Bernoulli},
     volume = {5},
     number = {6},
     year = {1999},
     pages = { 447-481},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1172617199}
}
Hofmann, Marc. Lp estimation of the diffusion coefficient. Bernoulli, Tome 5 (1999) no. 6, pp.  447-481. http://gdmltest.u-ga.fr/item/1172617199/