Finite-dimensional approximation for the diffusion coefficient in the simple exclusion process
Jara, Milton
Ann. Probab., Tome 34 (2006) no. 1, p. 2365-2381 / Harvested from Project Euclid
We show that for the mean zero simple exclusion process in ℤd and for the asymmetric simple exclusion process in ℤd for d≥3, the self-diffusion coefficient of a tagged particle is stable when approximated by simple exclusion processes on large periodic lattices. The proof depends on a similar stability property of the Sobolev inner product associated with the operator.
Publié le : 2006-11-14
Classification:  Simple exclusion process,  central limit theorem,  tagged particle,  60K35
@article{1171377447,
     author = {Jara, Milton},
     title = {Finite-dimensional approximation for the diffusion coefficient in the simple exclusion process},
     journal = {Ann. Probab.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 2365-2381},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1171377447}
}
Jara, Milton. Finite-dimensional approximation for the diffusion coefficient in the simple exclusion process. Ann. Probab., Tome 34 (2006) no. 1, pp.  2365-2381. http://gdmltest.u-ga.fr/item/1171377447/