We show that for the mean zero simple exclusion process in ℤd and for the asymmetric simple exclusion process in ℤd for d≥3, the self-diffusion coefficient of a tagged particle is stable when approximated by simple exclusion processes on large periodic lattices. The proof depends on a similar stability property of the Sobolev inner product associated with the operator.
Publié le : 2006-11-14
Classification:
Simple exclusion process,
central limit theorem,
tagged particle,
60K35
@article{1171377447,
author = {Jara, Milton},
title = {Finite-dimensional approximation for the diffusion coefficient in the simple exclusion process},
journal = {Ann. Probab.},
volume = {34},
number = {1},
year = {2006},
pages = { 2365-2381},
language = {en},
url = {http://dml.mathdoc.fr/item/1171377447}
}
Jara, Milton. Finite-dimensional approximation for the diffusion coefficient in the simple exclusion process. Ann. Probab., Tome 34 (2006) no. 1, pp. 2365-2381. http://gdmltest.u-ga.fr/item/1171377447/