Adiabatic transition probability for a tangential crossing
Watanabe, Takuya
Hiroshima Math. J., Tome 36 (2006) no. 1, p. 443-468 / Harvested from Project Euclid
We consider a time-dependent Schrödinger equation whose Hamiltonian is a $2\times 2$ real symmetric matrix. We study, using an exact WKB method, the adiabatic limit of the transition probability in the case where several complex eigenvalue crossing points accumulate to one real point.
Publié le : 2006-11-14
Classification:  Adiabatic limit,  transition probability,  singular perturbation,  exact WKB method,  34E20,  34E25,  81Q20
@article{1171377083,
     author = {Watanabe, Takuya},
     title = {Adiabatic transition probability for a tangential crossing},
     journal = {Hiroshima Math. J.},
     volume = {36},
     number = {1},
     year = {2006},
     pages = { 443-468},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1171377083}
}
Watanabe, Takuya. Adiabatic transition probability for a tangential crossing. Hiroshima Math. J., Tome 36 (2006) no. 1, pp.  443-468. http://gdmltest.u-ga.fr/item/1171377083/