Stable extendibility of the tangent bundles over lens spaces
Imaoka, Mitsunori ; Yamasaki, Hironori
Hiroshima Math. J., Tome 36 (2006) no. 1, p. 339-351 / Harvested from Project Euclid
The purpose of this paper is to study the stable extendibility of the tangent bundle $\tau_n(p)$ of the $(2n+1)$-\hspace dimensional standard lens space $\mL^n(p)$ for odd prime $p$. We investigate the value of integer $m$ for which $\tau_n(p)$ is stably extendible to $\mL^m(p)$ but not stably extendible to $\mL^{m+1}(p)$, and in particular we completely determine $m$ for $p=5$ or $7$. A stable splitting of $\tau_n(p)$ and the stable extendibility of a Whitney sum of $\tau_n(p)$ are also discussed.
Publié le : 2006-11-14
Classification:  Tangent bundle,  lens space,  stably extendible,  KO-theory,  55R50,  55N15
@article{1171377077,
     author = {Imaoka, Mitsunori and Yamasaki, Hironori},
     title = {Stable extendibility of the tangent bundles over lens spaces},
     journal = {Hiroshima Math. J.},
     volume = {36},
     number = {1},
     year = {2006},
     pages = { 339-351},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1171377077}
}
Imaoka, Mitsunori; Yamasaki, Hironori. Stable extendibility of the tangent bundles over lens spaces. Hiroshima Math. J., Tome 36 (2006) no. 1, pp.  339-351. http://gdmltest.u-ga.fr/item/1171377077/