On a $L_1$-Test Statistic of Homogeneity
Biau, Gérard ; Györfi, László
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 877-881 / Harvested from Project Euclid
We present a simple and explicit multivariate procedure for testing homogeneity of two independent samples of size $n$. The test statistic $T_n$ is the $L_1$ distance between the two empirical distributions restricted to a finite partition. We first discuss Chernoff-type large deviation properties of $T_n$. This results in a distribution-free strongly consistent test of homogeneity, which rejects the null if $T_n$ becomes large. Then the asymptotic null distribution of the test statistic is obtained, leading to a new consistent test procedure.
Publié le : 2007-01-14
Classification:  homogeneity testing,  partitions,  large deviations,  consistent testing,  central limit theorem,  Poissonization,  62G10
@article{1170347810,
     author = {Biau, G\'erard and Gy\"orfi, L\'aszl\'o},
     title = {On a $L\_1$-Test Statistic of Homogeneity},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 877-881},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1170347810}
}
Biau, Gérard; Györfi, László. On a $L_1$-Test Statistic of Homogeneity. Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  877-881. http://gdmltest.u-ga.fr/item/1170347810/