Itération de pliages de quadrilatères (II)
Benoist, Yves ; Hulin, Dominique
Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, p. 773-787 / Harvested from Project Euclid
Starting with a quadrilateral $q_0=(A_1,A_2,A_3,A_4)$ of $\m R^2$, one constructs a sequence of quadrilaterals $q_n=(A_{4n+1},\ldots ,A_{4n+4})$ by iteration of foldings~: $q_n= \ph_4\circ\ph_3\circ\ph_2\circ\ph_1(q_{n-1})$ where the folding $\ph_j$ replaces the vertex number $j$ by its symmetric with respect to the opposite diagonal. We have studied [1] the dynamical behavior of this sequence. In particular, we have seen that the drift ${\D v(q_0):= \lim_{n\ra\infty}}\frac1n q_n$ exists and, for Lebesgue almost all $q_0$, the sequence $( q_n -nv(q_0))_{n\geq 1}$ is dense on a bounded analytic curve. Here, we prove that, for Baire generic $q_0$, the closure of the same sequence $( q_n -nv(q_0))_{n\geq 1}$ contains all the translates of $q_0$.
Publié le : 2007-01-14
Classification: 
@article{1170347804,
     author = {Benoist, Yves and Hulin, Dominique},
     title = {It\'eration de pliages de quadrilat\`eres (II)},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {13},
     number = {5},
     year = {2007},
     pages = { 773-787},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1170347804}
}
Benoist, Yves; Hulin, Dominique. Itération de pliages de quadrilatères (II). Bull. Belg. Math. Soc. Simon Stevin, Tome 13 (2007) no. 5, pp.  773-787. http://gdmltest.u-ga.fr/item/1170347804/