Stable points of unit ball in Orlicz spaces
Wisła, Marek
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 501-515 / Harvested from Czech Digital Mathematics Library

The aim of this paper is to investigate stability of unit ball in Orlicz spaces, endowed with the Luxemburg norm, from the ``local'' point of view. Firstly, those points of the unit ball are characterized which are stable, i.e., at which the map $z\rightarrow \{(x,y):\frac{1}{2}(x+y)=z\}$ is lower-semicontinuous. Then the main theorem is established: An Orlicz space $L^{\varphi }(\mu )$ has stable unit ball if and only if either $L^{\varphi }(\mu )$ is finite dimensional or it is isometric to $L^{\infty }(\mu )$ or $\varphi $ satisfies the condition $\Delta _r$ or $\Delta _r^0$ (appropriate to the measure $\mu $ and the function $\varphi $) or $c(\varphi )<\infty , \varphi (c(\varphi ))<\infty $ and $\mu (T)<\infty $. Finally, it is proved that the set of all stable points of norm one is dense in the unit sphere $S(L^{\varphi }(\mu ))$.

Publié le : 1991-01-01
Classification:  46B20,  46E30
@article{116986,
     author = {Marek Wis\l a},
     title = {Stable points of unit ball in Orlicz spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {501-515},
     zbl = {0770.46013},
     mrnumber = {1159798},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116986}
}
Wisła, Marek. Stable points of unit ball in Orlicz spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 501-515. http://gdmltest.u-ga.fr/item/116986/

Clausing A.; Papadopoulou S. Stable convex sets and extreme operators, Math. Ann. 231 (1978), 193-200. (1978) | MR 0467249

Engelking R. General Topology, Polish Scientific Publishers, Warsaw, 1977. | MR 0500780 | Zbl 0684.54001

Grząślewicz R. Finite dimensional Orlicz spaces, Bull. Acad. Polon. Sci.: Math. 33 (1985), 277-283. (1985) | MR 0816376

Lazar A.J. Affine functions on simplexes and extreme operators, Israel J. Math. 5 (1967), 31-43. (1967) | MR 0211246 | Zbl 0149.08703

Lima Å. On continuous convex functions and split faces, Proc. London Math. Soc. 25 (1972), 27-40. (1972) | MR 0303243 | Zbl 0236.46024

Luxemburg W.A.J. Banach function spaces, Thesis, Delft, 1955. | MR 0072440 | Zbl 0162.44701

Michael E. Continuous selections I, Ann. of Math. (2) 63 (1956), 361-382. (1956) | MR 0077107 | Zbl 0071.15902

Musielak J. Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer Verlag, 1983. | MR 0724434 | Zbl 0557.46020

O'Brien R.C. On the openness of the barycentre map, Math. Ann. 223 (1976), 207-212. (1976) | MR 0420221 | Zbl 0321.46004

Orlicz W. Über eine gewisse Klasse von Räumen vom Typus B, Bull. Intern. Acad. Pol., série A, Kraków, 1932, 207-220. | Zbl 0006.31503

Papadopoulou S. On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. (1977) | MR 0450938 | Zbl 0339.46001

Suarez-Granero A. Stable unit balls in Orlicz spaces, Proc. Amer. Math. Soc. 109, 1 (1990), 97-104. (1990) | MR 1000154 | Zbl 0722.46014

Vesterstrøm J. On open maps, compact convex sets and operator algebras, J. London Math. Soc. 6 (1973), 289-297. (1973) | MR 0315464

Wisła M. Extreme points and stable unit balls in Orlicz sequence spaces, Archiv der Math. 56 (1991), 482-490. (1991) | MR 1100574

Wisła M. Stable unit balls in finite dimensional generalized Orlicz spaces, Proceedings of the Second Conference ``Function Spaces'', Poznań, 1989, Teubner Texte zur Mathematik, to appear. | MR 1155158

Wisła M. Continuity of the identity embedding of Musielak-Orlizc sequence spaces, Proc. of the 14th Winter School on Abstract Analysis, Srní, 1986, Supp. ai Rendiconti del Circolo Mat. di Palermo 14 (1987), 427-437. | MR 0920876