We show that locally conformal cosymplectic manifolds may be seen as generalized phase spaces of time-dependent Hamiltonian systems. Thus we extend the results of I. Vaisman for the time-dependent case.
@article{116980, author = {Domingo Chinea and Manuel de Le\'on and Juan C. Marrero}, title = {Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {383-387}, zbl = {0748.53016}, mrnumber = {1137800}, language = {en}, url = {http://dml.mathdoc.fr/item/116980} }
Chinea, Domingo; León, Manuel de; Marrero, Juan C. Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 383-387. http://gdmltest.u-ga.fr/item/116980/
Foundations of Mechanics, $2^{nd}$ ed., Benjamin, New York, 1978. | MR 0515141 | Zbl 0393.70001
Locally conformal cosymplectic manifolds, preprint. | Zbl 0748.53016
Sur les structures presque complexes et autres structures infinitésimales régulières, Bull. Soc. Math. France 83 (1955), 195-224. (1955) | MR 0079766
Symplectic Geometry and Analytical Mechanics, Reidel Publ., Dordrecht, 1987. | MR 0882548 | Zbl 0643.53002
Methods of Differential Geometry in Analytical Mechanics, NorthHolland Mathematical Studies No. 158, Amsterdam, 1989.
On contact structures of real and complex manifolds, Tôhoku Math. J. 15 (1963), 227-252. (1963) | MR 0157331 | Zbl 0122.40704
Locally conformal symplectic manifolds, Internat. J. Math. & Math. Sci. 8, 3 (1985), 521-536. (1985) | MR 0809073 | Zbl 0585.53030