On $\omega^2$-saturated families
Soukup, Lajos
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 355-359 / Harvested from Czech Digital Mathematics Library

If there is no inner model with measurable cardinals, then for each cardinal $\lambda $ there is an almost disjoint family $\Cal A_{\lambda}$ of countable subsets of $\lambda $ such that every subset of $\lambda $ with order type $\geq {\omega^{\scriptscriptstyle2}}$ contains an element of $\Cal A_{\lambda}$.

Publié le : 1991-01-01
Classification:  03E05,  03E35,  03E55
@article{116976,
     author = {Lajos Soukup},
     title = {On $\omega^2$-saturated families},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {355-359},
     zbl = {0755.03027},
     mrnumber = {1137796},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116976}
}
Soukup, Lajos. On $\omega^2$-saturated families. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 355-359. http://gdmltest.u-ga.fr/item/116976/

Balcar B.; Dočkálková J.; Simon P. Almost disjoint families of countable sets, in Proc. Coll. Soc. J. Bolyai 37, Finite and Infinite Sets, Eger, 1981, vol I.

Erdös P.; Hajnal A. Unsolved problems in set theory, Proc. Symp. Pure Math., vol. 13, part 1, Am. Math. Soc., R. I. 1971, 17-48. | MR 0280381

Erdös P.; Hajnal A. Unsolved and solved problems in set theory, Proc Symp. Pure Math., vol. 25, Am. Math. Soc., R. I. 1971, 269-287. | MR 0357122

Goldstern M.; Judah H.; Shelah S. Saturated families, and more on regular spaces omitting cardinals, preprint. | MR 1052573

Hajnal A. Some results and problem on set theory, Acta Math. Acad. Sci. Hung. 11 (1960), 277-298. (1960) | MR 0150044

Hajnal A.; Juhász I.; Soukup L. On saturated almost disjoint families, Comment. Math. Univ. Carolinae 28 (1987), 629-633. (1987) | MR 0928677

Jech T. Set Theory, Academic Press, New York, 1978. | MR 0506523 | Zbl 1007.03002

Komáth P. Dense systems of almost disjoint sets, in Proc. Coll. Soc. J. Bolyai 37, Finite and Infinite Sets, Eger, 1981, vol I.