If there is no inner model with measurable cardinals, then for each cardinal $\lambda $ there is an almost disjoint family $\Cal A_{\lambda}$ of countable subsets of $\lambda $ such that every subset of $\lambda $ with order type $\geq {\omega^{\scriptscriptstyle2}}$ contains an element of $\Cal A_{\lambda}$.
@article{116976, author = {Lajos Soukup}, title = {On $\omega^2$-saturated families}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {355-359}, zbl = {0755.03027}, mrnumber = {1137796}, language = {en}, url = {http://dml.mathdoc.fr/item/116976} }
Soukup, Lajos. On $\omega^2$-saturated families. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 355-359. http://gdmltest.u-ga.fr/item/116976/
Almost disjoint families of countable sets, in Proc. Coll. Soc. J. Bolyai 37, Finite and Infinite Sets, Eger, 1981, vol I.
Unsolved problems in set theory, Proc. Symp. Pure Math., vol. 13, part 1, Am. Math. Soc., R. I. 1971, 17-48. | MR 0280381
Unsolved and solved problems in set theory, Proc Symp. Pure Math., vol. 25, Am. Math. Soc., R. I. 1971, 269-287. | MR 0357122
Saturated families, and more on regular spaces omitting cardinals, preprint. | MR 1052573
Some results and problem on set theory, Acta Math. Acad. Sci. Hung. 11 (1960), 277-298. (1960) | MR 0150044
On saturated almost disjoint families, Comment. Math. Univ. Carolinae 28 (1987), 629-633. (1987) | MR 0928677
Set Theory, Academic Press, New York, 1978. | MR 0506523 | Zbl 1007.03002
Dense systems of almost disjoint sets, in Proc. Coll. Soc. J. Bolyai 37, Finite and Infinite Sets, Eger, 1981, vol I.