The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited
Weidemaier, Peter
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 307-314 / Harvested from Czech Digital Mathematics Library

Filling a possible gap in the literature, we give a complete and readable proof of this trace theorem, which also shows that the imbedding constant is uniformly bounded for $T \downarrow 0$. The proof is based on a version of Hardy's inequality (cp. Appendix).

Publié le : 1991-01-01
Classification:  34A47,  34B15,  34C11,  46E35
@article{116972,
     author = {Peter Weidemaier},
     title = {The trace theorem  $W^{2,1}\_p(\Omega\_T) \ni f \mapsto \nabla\_{\!x} f \in W^{1-1/p,1/2-1/2p}\_p(\partial \Omega\_T)$ revisited},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {307-314},
     zbl = {0770.46018},
     mrnumber = {1137792},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116972}
}
Weidemaier, Peter. The trace theorem  $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 307-314. http://gdmltest.u-ga.fr/item/116972/

Adams R.A. Sobolev Spaces, New York - San Francisco - London: Academic Press 1975. | MR 0450957 | Zbl 1098.46001

Besov O.V.; Il'In V.P.; Nikol'Skii S.M. Integral Representations of Functions and Imbedding Theorems, Vol. I., Wiley, 1978. | Zbl 0392.46022

Il'In V.P. The properties of some classes of differentiable functions of several variables defined in an n-dimensional region, Transl. AMS 81 (1969), 91-256 Trudy Mat. Inst. Steklov 66 (1962), 227-363. (1962) | MR 0153789

Il'In V.P.; Solonnikov V.A. On some properties of differentiable functions of several variables, Transl. AMS 81 (1969), 67-90 Trudy Mat. Inst. Steklov 66 (1962), 205-226. (1962) | MR 0152793

Kufner A.; John O.; Fučik S. Function Spaces, Leyden, Noordhoff Int. Publ. 1977. | MR 0482102

Ladyshenskaya O.A.; Solonnikov V.A.; Uralceva N.N Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence, R.I. 1968.

Rákosník J. Some remarks to anisotropic Sobolev spaces, I. Beiträge zur Analysis 13 (1979), 55-68. (1979) | MR 0536217

Weidemaier P. Local existence for parabolic problems with fully nonlinear boundary condition; an $L^p$-approach, to appear in Ann. mat. pura appl.

Wheeden R. L.; Zygmund A. Measure and Integral., New York - Basel: Dekker 1977. | MR 0492146 | Zbl 0362.26004