We consider the nonlinear Dirichlet problem $$ -u'' -r(x)|u|^\sigma u= \lambda u \text{ in } (0,\infty ), \, u(0)=0 \text{ and } \lim _{x\rightarrow \infty } u(x)=0, $$ and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^{1,2} (0,\infty )$ and in $L^p(0,\infty )\, (2\leq p\leq \infty )$.
@article{116971, author = {Wolfgang Rother}, title = {Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {297-305}, zbl = {0749.34016}, mrnumber = {1137791}, language = {en}, url = {http://dml.mathdoc.fr/item/116971} }
Rother, Wolfgang. Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 297-305. http://gdmltest.u-ga.fr/item/116971/
Sobolev Spaces, Academic Press, New York, 1975. | MR 0450957 | Zbl 1098.46001
On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Analysis 9 (1972), 249-261. (1972) | MR 0299966 | Zbl 0224.35061
Remarks on the Schrödinger operator with singular complex potentials, J. Math. pures et appl. 58 (1979), 137-151. (1979) | MR 0539217 | Zbl 0408.35025
Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, Heidelberg, New York, 1983. | MR 0737190 | Zbl 1042.35002
Linear Partial Differential Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1976. | MR 0404822
Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. (3) 45 (1982), 169-192. (1982) | MR 0662670 | Zbl 0505.35010