On the covering dimension of the fixed point set of certain multifunctions
Ricceri, Ornella Naselli
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 281-286 / Harvested from Czech Digital Mathematics Library

We study the covering dimension of the fixed point set of lower semicontinuous multifunctions of which many values can be non-closed or non-convex. An application to variational inequalities is presented.

Publié le : 1991-01-01
Classification:  47H04,  47H10,  47H19,  49A29,  49J40
@article{116969,
     author = {Ornella Naselli Ricceri},
     title = {On the covering dimension of the fixed point set of certain multifunctions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {281-286},
     zbl = {0753.47034},
     mrnumber = {1137789},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116969}
}
Ricceri, Ornella Naselli. On the covering dimension of the fixed point set of certain multifunctions. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 281-286. http://gdmltest.u-ga.fr/item/116969/

Aubin J.-P. Mathematical methods of game and economic theory, North-Holland Publishing Company, 1979. | MR 0556865 | Zbl 1152.91005

Engelking R. Dimension theory, PWN, 1978. | MR 0482697 | Zbl 0401.54029

Naselli Ricceri O. $\Cal A$-fixed points of multi-valued contractions, J. Math. Anal. Appl. 135 (1988), 406-418. (1988) | MR 0967219 | Zbl 0662.54030

Ricceri B. Fixed points of lower semicontinuous multifunctions and applications: alternative and minimax theorems, Rend. Accad. Naz. Sci. XL, Mem. Mat. 103 (1985), 331-338. (1985) | MR 0899257 | Zbl 0586.47058

Saint Raymond J. Points fixes des multiplications à valeurs convexes, C.R. Acad. Sci. Paris, Sér. I, 298 (1984), 71-74. (1984) | MR 0740940