We study the covering dimension of the fixed point set of lower semicontinuous multifunctions of which many values can be non-closed or non-convex. An application to variational inequalities is presented.
@article{116969,
author = {Ornella Naselli Ricceri},
title = {On the covering dimension of the fixed point set of certain multifunctions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
volume = {32},
year = {1991},
pages = {281-286},
zbl = {0753.47034},
mrnumber = {1137789},
language = {en},
url = {http://dml.mathdoc.fr/item/116969}
}
Ricceri, Ornella Naselli. On the covering dimension of the fixed point set of certain multifunctions. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 281-286. http://gdmltest.u-ga.fr/item/116969/
Mathematical methods of game and economic theory, North-Holland Publishing Company, 1979. | MR 0556865 | Zbl 1152.91005
Dimension theory, PWN, 1978. | MR 0482697 | Zbl 0401.54029
$\Cal A$-fixed points of multi-valued contractions, J. Math. Anal. Appl. 135 (1988), 406-418. (1988) | MR 0967219 | Zbl 0662.54030
Fixed points of lower semicontinuous multifunctions and applications: alternative and minimax theorems, Rend. Accad. Naz. Sci. XL, Mem. Mat. 103 (1985), 331-338. (1985) | MR 0899257 | Zbl 0586.47058
Points fixes des multiplications à valeurs convexes, C.R. Acad. Sci. Paris, Sér. I, 298 (1984), 71-74. (1984) | MR 0740940