Generating real maps on a biordered set
Martinón, Antonio
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 265-272 / Harvested from Czech Digital Mathematics Library

Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps $X\rightarrow \Bbb R$ from an initial one $X\rightarrow \Bbb R$, where $X$ is a set endowed with two orders, $\leq $ and $\leq ^{\ast }$, related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone.

Publié le : 1991-01-01
Classification:  06A06,  06A10,  47A30,  47A53
@article{116964,
     author = {Antonio Martin\'on},
     title = {Generating real maps on a biordered set},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {265-272},
     zbl = {0757.47013},
     mrnumber = {1137787},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116964}
}
Martinón, Antonio. Generating real maps on a biordered set. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 265-272. http://gdmltest.u-ga.fr/item/116964/

Banas J.; Goebel K. Measures of Noncompactness in Banach Spaces, Marcel Dekker, Lecture Notes in Pure and Applied Math., vol.60; New York, Basel, 1980. | MR 0591679 | Zbl 0441.47056

Bourbaki N. Éléments de Mathématique. Topologie Générale, Hermann, Paris, 1971. | MR 0358652 | Zbl 1107.54001

Fajnshtejn A.S. On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian), Spektr. Teor. Oper. 6 (1985), 182-195 Zbl 634 #47010. (1985)

Gonzalez M.; Martinon A. Operational quantities and operator ideals, Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 383-387. | MR 1112904

Gonzalez M.; Martinon A. Operational quantities derived from the norm and measures of noncompactness, Proc. Royal Irish Acad., to appear. | MR 1173159

Gonzalez M.; Martinon A. A generalization of semi-Fredholm operators, 1990, preprint.

Lebow A.; Schechter M. Semigroups of operators and measures of noncompactness, J. Func. Anal. 7 (1971), 1-26. (1971) | MR 0273422 | Zbl 0209.45002

Martinon A. Generating operational quantities in Fredholm theory, Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 449-453. | MR 1112916

Martinon A. Cantidades operacionales en Teoría de Fredholm (Tesis), Univ. La Laguna, 1989. | MR 1067932

Pietsch A. Operator Ideals, North-Holland; Amsterdam, New York, Oxford, 1980. | MR 0582655 | Zbl 1012.47001

Schechter M. Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061-1071. (1972) | MR 0295103 | Zbl 0274.47007

Sedaev A.A. The structure of certain linear operators (in Russian), Mat. Issled. 5 (1970), 166-175 MR 43 #2540; Zbl. 247 #47005. (1970) | MR 0276800

Tylli H.-O. On the asymptotic behaviour of some quantities related to semi-Fredholm operators, J. London Math. Soc. (2) 31 (1985), 340-348. (1985) | MR 0809955 | Zbl 0582.47004

Weis L. Über strikt singulare und strikt cosingulare Operatoren in Banachräumen (Dissertation), Univ. Bonn, 1974.

Zemanek J. Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219-234. (1984) | MR 0783991 | Zbl 0556.47008