We give conditions on pairs of weights which are necessary and sufficient for the operator $T(f)=K\ast f$ to be a weak type mapping of one weighted Lorentz space in another one. The kernel $K$ is an anisotropic radial decreasing function.
@article{116963, author = {Vachtang Michailovi\v c Kokilashvili and Ji\v r\'\i\ R\'akosn\'\i k}, title = {A two weight weak inequality for potential type operators}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {32}, year = {1991}, pages = {251-263}, zbl = {0746.42011}, mrnumber = {1137786}, language = {en}, url = {http://dml.mathdoc.fr/item/116963} }
Kokilashvili, Vachtang Michailovič; Rákosník, Jiří. A two weight weak inequality for potential type operators. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 251-263. http://gdmltest.u-ga.fr/item/116963/
The Hardy-Littlewood maximal function on $L(p,q)$ spaces with weight, Indiana Univ. Math. J. 31 (1982), no.1, 109-120. (1982) | MR 0642621
Weighted inequalities for anisotropic potentials, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 82 (1986), 25-36. (1986) | MR 0884696
Two weight inequalities for generalized potentials (in Russian), Trudy Mat. Inst. Steklov, to appear. | MR 1221297
Weighted inequalities for maximal functions and fractional integrals in Lorentz spaces, Math. Nachr. 133 (1987), 33-42. (1987) | MR 0912418 | Zbl 0652.42005
Weighted inequalities for anisotropic potentials and maximal functions (in Russian), Dokl. Akad. Nauk SSSR 282 (1985), no. 6, 1304-1306 English translation: Soviet Math. Dokl. 31 (1985), no. 3, 583-585. (1985) | MR 0802694
Two weight weak type inequalities for fractional type integrals, preprint no. 45, Mathematical Institute of the Czechoslovak Academy of Sciences, Prague 1989.
A two weight type inequality for fractional integrals, Trans. Amer. Math. Soc. 281 (1984), no. 1, 339-345. (1984) | MR 0719674