Sigma order continuity and best approximation in $L_\varrho$-spaces
Kilmer, Shelby J. ; Kozƚowski, Wojciech M. ; Lewicki, Grzegorz
Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991), p. 241-250 / Harvested from Czech Digital Mathematics Library

In this paper we give a characterization of $\sigma $-order continuity of modular function spaces $L_\varrho$ in terms of the existence of best approximants by elements of order closed sublattices of $L_\varrho\,$. We consider separately the case of Musielak--Orlicz spaces generated by non-$\sigma $-finite measures. Such spaces are not modular function spaces and the proofs require somewhat different methods.

Publié le : 1991-01-01
Classification:  41A50,  41A65,  46E30
@article{116962,
     author = {Shelby J. Kilmer and Wojciech M. Kozlowski and Grzegorz Lewicki},
     title = {Sigma order continuity and best approximation in $L\_\varrho$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {32},
     year = {1991},
     pages = {241-250},
     zbl = {0754.41017},
     mrnumber = {1137785},
     language = {en},
     url = {http://dml.mathdoc.fr/item/116962}
}
Kilmer, Shelby J.; Kozƚowski, Wojciech M.; Lewicki, Grzegorz. Sigma order continuity and best approximation in $L_\varrho$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 32 (1991) pp. 241-250. http://gdmltest.u-ga.fr/item/116962/

Ando T.; Amemiya I. Almost everywhere convergence of prediction sequences in $L_p(1< p<\infty)$, Z. Wahrscheinlichkeitstheorie verw. Gebiete 4 (1965), 113-120. (1965) | MR 0189077

Birnbaum Z.; Orlicz W. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931), 1-67. (1931) | Zbl 0003.25202

Kilmer S.; Kozlowski W.M.; Lewicki G. Best approximants in modular function spaces, Journ. Approx. Th. 63 (1990), 338-367. (1990) | MR 1081035 | Zbl 0718.41049

Kozlowski W.M. Modular Function Spaces, Series of Monographs and Textbooks in Pure and Applied Mathematics, 122, Dekker, New York, Basel, 1988. | MR 1474499 | Zbl 0718.41049

Kozlowski W.M. Notes on modular function spaces I, Comment. Math. 28 (1988), 87-100. (1988) | MR 0988963 | Zbl 0747.46023

Kozlowski W.M. Notes on modular function spaces II, Comment. Math. 28 (1988), 101-116. (1988) | MR 1474499 | Zbl 0747.46022

Krasnosel'Skii M.A.; Rutickii Y.B. Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961. | MR 0126722

Landers D.; Rogge L. Best approximants in $L_\varphi $-spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 51 (1980), 215-237. (1980) | MR 0566317

Lindenstrauss J.; Tzafriri J. Classical Banach Spaces II: Function Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1979. | MR 0540367 | Zbl 0403.46022

Luxemburg W.; Zaanen A. Notes on Banach function spaces I-XIII, Proc. Royal Acad. Sci., Amsterdam (1963) A-66, 135-153, 239-263, 496-504, 655-681; (1964) A-64, 101-119; (1964) A-67, 360-376, 493-543. | MR 0173167

Musielak J. Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. | MR 0724434 | Zbl 0557.46020

Orlicz W. Über eine gewisse Klasse von Räumen vom Typus B, Bull. Acad. Polon. Sci. Ser A (1932), 207-220. (1932) | Zbl 0006.31503

Orlicz W. Über Räumen $L^M$, Bull. Acad. Polon. Sci. Ser A (1936), 93-107. (1936)

Shintani T.; Ando T. Best approximants in $L_1$ space, Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 33-39. (1975) | MR 0380963 | Zbl 0298.41016

Turett B. Fenchel-Orlicz spaces, Dissertationes Math. 181 (1980), 1-60. (1980) | MR 0578390 | Zbl 0435.46025

Zaanen A.C. Integration, North Holland, Amsterdam, London, 1967. | MR 0222234 | Zbl 0671.42001